
Argtable Reference Manual
version 1.3

Generated by Doxygen 1.2.6

Fri Dec 21 00:12:19 2001

CONTENTS 1

Contents

1 Introduction to Argtable 1

2 Argtable Data Structure Index 3

3 Argtable File Index 3

4 Argtable Page Index 4

5 Argtable Class Documentation 4

6 Argtable File Documentation 6

7 Argtable Page Documentation 10

1 Introduction to Argtable

1.1 Legal notice.

The argtable library and accompanying documentation is copyright 1998, 1999, 2001 Stewart Heitmann
(sheitmann@users.sourceforge.net). Argtable is free software; you can redistribute it and/or
modify it under the terms of theGNU Library General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Library General Public License for more details.

You should have received a copy of the GNU Library General Public License along with this library; if not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

1.2 Overview.

Argtable (http://argtable.sourceforge.net) is a freely available programmer’s library for
parsing the command line arguments of any C/C++ program. It allows the programmer to specify the
desired format of the command line arguments in one or more statically defined arrays known as argument
tables. Each row of an argument table specifies the data type of an expected argument and nominates a
user-defined program variable as storage for the incoming argument value. If arguments require default
values, then these too are specified in the argument table.

Once an argument table has been established, parsing the command line is simply a matter of calling the
library’s arg scanargv() function which attempts to resolve the contents ofargv[] with the entries of the
argument table. If successful, the command line arguments are now known to be valid and their values are
ready and available for use in their nominated program variables.

If the arguments could not be successfully resolved thenarg scanargv returns an error message string
describing the reason for the failure and showing the location of the error in the command line. The
program can simply print the error message to stdout or stderr and exit.

ERROR: myprog grad:13 99 uh oh
ˆˆ unexpected argument

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

mailto:sheitmann@users.sourceforge.net
http://argtable.sourceforge.net

1.3 Styles of command line arguments. 2

Alternatively, if the program has multiple command line usages then it may choose to callarg scanargv
several times each with a different argument table until a successful match is found or all argument tables
are exhausted.

Auxilliary functionsarg glossary() andarg syntax() generate plain text descriptions of the arguments de-
fined in an argument table and their command line syntax. These make it easy to generate on-line help
facilities that are always current.

1.3 Styles of command line arguments.

Argtable supports bothtaggedanduntaggedcommand line arguments. Tagged arguments are identified
by a prefix tag, as in-o file or title:mystuff . The tag enables these arguments to appear anywhere on
the command line, and in any order. The programmer may implement any style of argument tag desired,
including such common styles as-title mystuff , title:mystuff , –title mystuff , or title=mystuff . Untagged
arguments on the other hand have no prefix; they are identified strictly by their ordering on the command
line. The two styles of arguments may be freely mixed, whereupon the tagged arguments are always
processed first, leaving any remaining (untagged) arguments to be scanned from left to right.

A command line argument may be of typeinteger, double, string, or boolean. Doubles are accepted in
in either floating point or scientific notation, and strings may be either quoted or unquoted. Booleans will
accept any of the keywordson, off, yes, no, true, or falseand yield an integer value of 0 (negative) or 1
(affirmative) accordingly.

A special argument type calledliteral is also provided; it yields an integer value according to the pres-
ence or absence of a given string literal on the command line. It is useful for specifying unparameterised
command line switches such as-verboseand-help.

1.4 Optional arguments and default values.

Arguments may be assigned default values that take effect when no matching command line argument could
be found. When a default value is specified for an argument you are, in effect, declaring that argument as
being optional. Arguments without defaults are, by definition, regarded as mandatory arguments.

1.5 Supported platforms.

Argtable conforms to ansi C requirements and should compile on any standard ansi C compiler. To date, it
has been successfully compiled on:

• MIPSpro C/C++ on IRIX 6.2, 6.3 and IRIX64 6.2
• DEC C/C++ on Digital Unix V4.0 (OSF/1)
• GNU gcc/g++ on DEC Digital Unix V4.0 (OSF/1); IRIX 6.2, 6.3; IRIX64 6.2; Linux 2.0.30; and

SunOS 5.5.1.

Please let me know if you have successfully used argtable on other platforms.

1.6 Installing Argtable

The fastest and easiest way to use argtable is simply to copy theargtable.h andargtable.cfiles into your
project and compile them with the rest of your code.

If you are a system administrator, you may wish to install argtable on your system as a programmer’s
library, complete with man pages and html documentation. This is easy to do as the makefiles follow the
usualautoconfprocedure.

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

1.7 Getting started. 3

1. cd to the argtable package directory and type ./configure to configure it for your system.

2. Typemake to compile the package.

3. Optionally, typemake checkto run the self-tests.

4. suas root user.

5. Typemake install to install the programs and documentation. By default the package installs into
/usr/local/ but a different location may be specified when configuring the package. Type ./configure
–help for the full list of configuration options.

6. logout from root user.

7. Typemake cleanto remove the temporary binaries created during compilation.

1.7 Getting started.

The Argtable Tutorialis the best place to get started. Then look at the example code supplied with the
distribution.

1.8 Similar packages.

Here are some other command line parsing tools that I am aware of. Apologies for any I may have omitted.

• clig: The Command Line Interpreter Generator:http://wsd.iitb.fhg.de/ ∼kir/clighome/

• opt: The Options and Parameter parsing Toolkit:ftp://ftp.lanl.gov/pub/users/jt/Software/opt/opt -
toc.html

• getopt: The GNU-style options parser. This comes as standard on most unix systems.

2 Argtable Data Structure Index

2.1 Argtable Data Structures

Here are the data structures with brief descriptions:

arg rec 4

3 Argtable File Index

3.1 Argtable File List

Here is a list of all files with brief descriptions:

argtable.h 6

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

http://wsd.iitb.fhg.de/~kir/clighome/
ftp://ftp.lanl.gov/pub/users/jt/Software/opt/opt_toc.html
ftp://ftp.lanl.gov/pub/users/jt/Software/opt/opt_toc.html

4 Argtable Page Index 4

4 Argtable Page Index

4.1 Argtable Related Pages

Here is a list of all related documentation pages:

The Argtable Tutorial 10

Release Notes. 15

5 Argtable Class Documentation

5.1 arg rec Struct Reference

#include <argtable.h >

Data Fields

• const char∗ tagstr
• const char∗ argname
• arg typeargtype
• void∗ valueptr
• const char∗ defaultstr
• const char∗ argdescrip

5.1.1 Detailed Description

An argument table is defined an array of argrec structs having one entry for each command line argument
that is expected. It is most conveniently defined and initialised as a static array (but need not be so).

//command line arguments will be written into these variables
int x,y,z,verbose,debug;
double radius;
char infname[100];
char outfname[100];i

//The argument table.
arg_rec argtable[] =

// TAG NAME TYPE STORAGE DEFAULT DESCRIPTION
{
{ NULL, "x", arg_int, &x, NULL, "x coord" },
{ NULL, "y", arg_int, &y, NULL, "y coord" },
{ NULL, "z", arg_int, &z, "0", "z coord" },
{ "-r ", NULL, arg_dbl, &radius, "1.0", "radius" },
{ "-o ", "<outfile>", arg_str, outfname, "-", "output file" },
{ "-verbose", NULL, arg_lit, &verbose, "0", "verbose output" },
{ NULL, "<infile>", arg_str, infname, NULL, "input file" },
{ "debug=", "<on/off>", arg_bool, &debug, "off", NULL },
};

const size_t narg = sizeof(argtable)/sizeof(arg_rec);

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

5.1 arg rec Struct Reference 5

5.1.2 Field Documentation

5.1.2.1 const char∗ arg rec::tagstr

The argument tag string defines the tag that identifies the argument on the command line. Tags may be any
string you choose provided they have no whitespace. Examples of common tag string styles are ”mytag:”,
”-mytag”, ”mytag=”. An argument can be specified without a tag by setting the tag string to NULL.
Untagged argument are taken from the command line from left to right after all the tagged arguments (if
any) have first been extracted.

5.1.2.2 const char∗ arg rec::argname

The argument name has no effect on the argument processing. It is simply a descriptive name used to
represent the argument in the output of thearg syntax() andarg glossary() functions. The argument name
can be whatever you want, and is a convenient place to communicate the default value to the user if you
so wish, for example ”<size>=1024”. If a NULL name string is given, it is automatically replaced by the
argument’s data type enclosed in angled brackets, as in ”<integer>”. If you dislike such behaviour, you
can effectively suppress the name by defining it as an empty string.

5.1.2.3 arg type arg rec::argtype

This defines the data type associated with a command line argument. It supports integer, double, string and
boolean data types as well as literal argument strings.

Strings may appear on the command line either quoted or unquoted.

Booleans expect one of the keywords ”true”, ”false”, ”yes”, ”no”, ”on”, or ”off” to appear on the command
line. These are converted to 0 (false,no,off) or 1 (true,yes,on) and stored as an integer.

Literals are command line arguments with no associated data value, they are used to define keyword strings
that can be used as command line switches. The string literal can be defined in either the tag string or
the name string fields. If you use the tag string then the literal, like other tagged arguments, may appear
anywhere on the command line. On the other hand, if you use the name string, then the literal must appear
in that argument’s position just as for normal untagged arguments. When a string literal is succesfully
scanned, an integer value of 1 is written into its user-suplied program variable, otherwise it is assigned the
default value (if it has one). If there is no default value, then the literal is regarded as a mandatory argument
the same as for any other argument.

5.1.2.4 void∗ arg rec::valueptr

Points to a user-defined variable into which the command line value will be written. It is imperative that
the data type of the user-defined variable matches the argtype field, otherwise you can expect very spurious
behaviour.

• arg int arguments requireint storage.
• arg doublearguments requiredoublestorage.
• arg str arguments require acharbuffer big enough to store the expected result (you’ll have to guess

what big enough is!).
• arg boolarguments requireint storage.
• arg lit arguments requireint storage.

Lastly, a NULL placed in this field will cause the argument value to be scanned in the normal way, but the
resulting value will be discarded.

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

6 Argtable File Documentation 6

5.1.2.5 const char∗ arg rec::defaultstr

The default string contains an optional default value to be used should the argument be missing from
teh command line. All defaults are defined as strings (as they would appear on teh command line) and
converted to the appropriate data type during processing.

If a default is specified as NULL then that argument is regarded as mandatory, meaning that a parse error
will result if the argument was not given on the command line.

5.1.2.6 const char∗ arg rec::argdescrip

The argument description string, like the name string, does not affect argument processing. Thearg -
glossary() function uses it to display additional descriptions of command line arguments. Arguments with
NULL description strings are omitted from the glossary altogether.

6 Argtable File Documentation

6.1 argtable.h File Reference

#include <stdio.h >

Data Structures

• structarg rec

Defines

• #defineARGTABLE VERSION1.3

Enumerations

• enumarg type{ arg int = 0, arg dbl, arg str, arg bool, arg lit }

Functions

• int arg scanargv(int argc, char∗∗argv,arg rec∗argtable, int n, char∗CmdLine, char∗ErrMsg, char
∗ErrMark)

Parse the command line as per a given argument table.

• int arg scanstr(char∗str,arg rec∗argtable, int n, char∗ErrMsg, char∗ErrMark)

Parse a string as per a given argument table.

• const char∗ arg syntax(constarg rec∗argtable, int n)

Generates a ’usage’ syntax string from an argument table.

• const char∗ arg glossary(constarg rec∗argtable, int n, const char∗prefix)

Generate a glossary string from an argument table.

• void arg catargs(int argc, char∗∗argv, char∗str)

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

6.1 argtable.h File Reference 7

Concatenate all argv[] arguments into a single string.

• arg rec arg record(char∗tagstr, char∗argname,arg type argtype, void∗valueptr, char∗defaultstr,
char∗argdescrip)

Builds and returns an argument table record.

• void arg dump(FILE ∗fp, constarg rec∗argtable, int n)

Print the contents of an argument table.

Variables

• const char∗ arg typestr[]

6.1.1 Define Documentation

6.1.1.1 #define ARGTABLEVERSION 1.3

6.1.2 Enumeration Type Documentation

6.1.2.1 enum argtype

arg type enums are used in the argument table to define the data type of a command line argument.

Enumeration values:
arg int Integer value.

arg dbl Double value.

arg str Ascii string; may be quoted or un-quoted.

arg bool Boolean; accepts the keywordsyes, no, true, false, on , or off and converts them into an
integer value of 0 (negative) or 1 (affirmative) accordingly.

arg lit Literal; returns 1 if a given literal string was present on the command line otherwise returns
the default value.

6.1.3 Function Documentation

6.1.3.1 int arg scanargv (int argc, char ∗∗ argv, arg rec ∗ argtable, int n, char ∗ CmdLine, char ∗
ErrMsg, char ∗ ErrMark)

Attempts to resolve the argv[] command line arguments (ignoring argv[0]) with the specifications given
in the argument table. The values scanned from the command line are written directly into the program
variables nominated by each argument table entry.

During the process, a copy of the command line is written (as a single line of space separated arguments)
into the user-supplied string at∗CmdLine in case it is needed in future for error reporting.

Should there be any conflict between the command line arguments and the argument table specifications,
an error message and corresponding error marker are written into the user-supplied strings at∗ErrMsg and
∗ErrMark respectively, after which the function returns zero. The error marker string is used to store a
string of tilde characters formated in such a way that the tildes underscore the exact location of the error
in ∗CmdLine when the strings are aligned one above the other. This can be useful for including in on-line
error messages to help the user quickly pinpoint the cause of the error.

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

6.1 argtable.h File Reference 8

If, on the other hand, all arguments were resolved successfully then∗ErrMsg and∗ErrMark are set to
empty strings and the function returns 1. Either way, CmdLine, ErrMsg, or ErrMark can be safely ignored
by passing them as NULL.

Returns:
1 upon success, 0 upon failure.

Parameters:
argc number of entries in argv[].

argv command line arguments.

argtable pointer to the argument table.

n number of entries in argtable[].

CmdLine pointer to storage for command line (may be NULL).

ErrMsg pointer to storage for error message (may be NULL).

ErrMark pointer to storage for error marker (may be NULL).

6.1.3.2 int arg scanstr (char∗ str, arg rec ∗ argtable, int n, char ∗ ErrMsg, char ∗ ErrMark)

This function is much likearg scanargv() except that is scans the arguments from the string at∗str rather
than from argv[]. The string is expected to contain a single line, space separated list of arguments, like that
generated byarg catargs().

In a departure fromarg scanargv, this function erases the scanned arguments from∗str by overwriting
them with spaces once they have been successfully scanned. Furthermore, this function does not throw an
error if there are still arguments remaining in∗str after the argtable has been fully processed. Thus, com-
plicated argument usages can be achieved by invoking this function multiple times on the same command
line string, each time applying a different argument table until the arguments have been exhausted, or an
error has been detected.

Returns:
1 upon success, 0 upon failure.

Parameters:
str pointer to command line string.

argtable pointer to the argument table.

n number of array elements in argtable[].

ErrMsg pointer to storage for error message (may be NULL).

ErrMark pointer to storage for error marker (may be NULL).

6.1.3.3 const char∗ arg syntax (constarg rec ∗ argtable, int n)

Builds a syntactical description of the allowable command line arguments specified by the ’argtable’ ar-
ray. The resulting string is stored in static data within the local scope of this function. Its contents are
overwritten by subsequent calls.

The syntactical description is generated as a single line of space separated argument descriptors, each
comprising of the argument’s tag string and name string concatenated together. For example,

”myprog x y [z] [-r <double>] [-o <outfile>] [-verbose]<infile> [debug=<on/off>]”

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

6.1 argtable.h File Reference 9

If an argument is optional (has a non-NULL default value) then its descriptor is enclosed in square brackets.
NULL name strings are substituted with the argument’s data type enclosed in angled brackets, as in<int>,
<double>, or<string>. If both the tag and the name are empty strings (””) then the argument is omitted
from the description altogether. This allows the suppression of individual arguments that you do not want
to appear.

Returns:
a pointer to the internal string.

Parameters:
argtable pointer to the argument table

n number of array elements in argtable[]

6.1.3.4 const char∗ arg glossary (constarg rec ∗ argtable, int n, const char∗ prefix)

Returns a pointer to an internal ’glossary’ string which contains a multi-line description of each of the
argument table entres that have a non-NULL<description> field. The contents of the glossary string
remain unaltered up until the next invocation of this function. Each line of the glossary string is formatted
as

”<prefix><tag><name><description>”

The ’prefix’ string is useful for adding indenting spaces before each line in the description to improve the
look of the glossary string, or it can be given as NULL in which case it is ignored.

Any NULL <tag> fields in the argument table will appear in the glosssary as empty strings.

Any NULL <name> fields will be substituted by a description of that argument’s data type, enclosed in
angled brackets, as in<int> and<double>. A name can effectively be suppressed from the glossary by
defining it as an empty string in the argument table.

Returns:
a pointer to the internal string.

Parameters:
argtable pointer to the argument table

n number of array elements in argtable[]

prefix a string to be prefixed to each line of the output

6.1.3.5 void argcatargs (int argc, char ∗∗ argv, char ∗ str)

Concatenates all of the arguments in the argv[] array and writes the result into∗str as a single line, space
separated string.

Any argv[] entries that contain whitespace are automatically encapsulated by single quotes prior to the
concatenation to preserve their word grouping. A trailing space is always appended to the resulting string
as a safety precaution in lieu of scanning for string literals that expect trailing space. It is assumed that∗str
is big enough to store the result.

Parameters:
argc number of arguments in argv[]

argv command line arguments

str pointer to destination string

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

7 Argtable Page Documentation 10

6.1.3.6 arg rec arg record (char ∗ tagstr, char ∗ argname, arg type argtype, void ∗ valueptr, char ∗
defaultstr, char ∗ argdescrip)

Returns anarg recstructure containing the values passed to the function. It is useful for building argument
tables dynamically.

Parameters:
tagstr argument tag string

argname argument name string

argtype argument data type

valueptr pointer to user-supplied storage location

defaultstr default argument value, as a string

argdescrip argument description string

6.1.3.7 void argdump (FILE ∗ fp, constarg rec ∗ argtable, int n)

The contents of the argument table, and the user-supplied variables it references, are printed to the stream
’fp’. This can be useful for debugging argument tables.

Parameters:
fp output stream

argtable pointer to the argument table

n number of array elements in argtable[]

6.1.4 Variable Documentation

6.1.4.1 const char∗ arg typestr

A fixed array of strings that are used when arguments are given NULL names. The array is indexed by
arg type, with each name describing the corresponding data type.

arg_str[arg_int] = "<int>";
arg_str[arg_dbl] = "<double>";
arg_str[arg_str] = "<string>";
arg_str[arg_bool] = "<bool>";
arg_str[arg_lit] = "";

7 Argtable Page Documentation

7.1 The Argtable Tutorial

Imagine we have written a program calledmyprog and we wish to implement the following command line
usage syntax for it:

myprog [-tit <title>] grad:gradient [y-int]
-tit <title> your title
grad:gradient line gradient
y-int y-intercept

We will create a single argument table in our program that defines the argument properties, and pass that
table along withargc andargv[] to thearg scanargv() function to do the parsing.

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

7.2 Defining the argument table. 11

7.2 Defining the argument table.

An argument table is just an array ofarg rec structs, with each array element pertaining to a single com-
mand line argument. Thearg recstruct is defined inargtable.has:

typedef enum {arg_int=0,arg_dbl,arg_str,arg_bool,arg_lit} arg_type;
typedef struct

{
const char *tagstr; // argument tag string
const char *argname; // argument name string
arg_type argtype; // argument data type
void *valueptr; // ptr to user storage location
const char *defaultstr; // default value, as a string
const char *argdescrip; // argument description string
} arg_rec;

Thus we may define our argument table statically in the code as follows:

int main(int argc, char **argv)
{
static char str[50];
static double grad;
static int c;
arg_rec argtable[] =

{
{"-tit ", "<title>", arg_str, str, "noname", "\t\t your title"},
{"grad:", "gradient", arg_dbl, &grad, NULL, "\t line gradient"},
{NULL, "y-int", arg_int, &c, "0", "\t\t y-intercept"}
};

const size_t narg = sizeof(argtable)/sizeof(arg_rec);
...

}

Defining the tables statically is a programming convenience but not a requirement; the table could equally
well have been dynamically allocated and initialized at runtime. Notice that I also chose to define the
argument table within the main() block because that’s the only place where it is used so there is no need to
promote it to a higher namespace. However you may define it in the global namespace if you prefer.

Our argument table has three rows, one for each command line argument-tit <title>, grad:gradient, and
y-int . The behaviour of the argument parsing is governed entirely by the contents of the various fields
(columns) of the argument table. Lets step through each field one by one.

The tag string:
The first field is the argument’s tag string. It defines the prefix literal that identifies a tagged argument
and should contain at least one non-whitespace character unless the argument is untagged whereupon
the field should be NULL. In our example,-tit <title> andgrad:gradient are tagged arguments but
y-int is untagged so it has a NULL tag string.

The name string:
The second field is the argument’s name string. It is not actually used to process the command line
arguments, rather it defines the name of the argument as it appears in the description strings generated
by thearg syntax andarg glossary functions. Those functions automatically substitute any NULL
names with the argument’s data type enclosed in angled brackets, as in ”<int>” or ”<string>”.

The data type:
The third field is an enumerated type that defines the data type of the command line argument. Possi-
ble values arearg int , arg dbl, arg str, arg bool, andarg lit . They represent integer, double, string,
boolean, and literal arguments respectively. In our example-tit <title> expects<title> to be substi-
tuted by a string value,grad:gradient expectsgradientto be a double, andy-int is expected to be an
integer.

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

7.3 Parsing the command line. 12

The data pointer:
The fourth field is a pointer-to-void that gives the address of the user-defined program variable used
to store the argument’s value. A NULL pointer here causes the value to be discarded once is has been
scanned. Take care that the data type of of the target memory location matches that specified in the
previous column. Arguments of typearg int , arg bool, andarg lit must each point to aninteger
variable. Those of typearg dbl must point to adoubleand those ofarg str must point to achar
array. In our example, the string value associated with-tit <title> is written into thechar str[50]
buffer, the double value associated withgrad:gradient is written intodouble grad, and the integer
value associated withy-int is written intoint c.

The default value:
The fifth field is a string which contains an optional default value for the argument. It is defined as
a string and automatically cast to the appropriate data type at run time. A NULL value indicates no
default. In our example,-tit <title> andy-int have default values of ”noname” and zero respectively,
whereasgrad:gradient has no default and is thus regarded as a mandatory argument.

The description string:
The sixth and final field allows the programmer to enter a brief description of the argument. It is these
descriptions that are output by thearg glossary() function. A NULL value causes that entry to be
omitted from the glossary output.

7.3 Parsing the command line.

Having defined the argument table, we can now use it to parse the command line arguments in argv[].
There are several ways to do this, but the simplest is to use thearg scanargvfunction.

int arg_scanargv(int argc,
char** argv,
arg_rec *argtable,
int n,
char* CmdLine,
char* ErrMsg,
char* ErrMark);

It takes as input the command line arguments inargv[] (there areargc of them) and a pointer to the
argument table inargtable (which hasn rows). It proceeds to scan the argv[] arguments (skipping argv[0])
and tries to resolve them with the entries given in the argument table. If this can be done successfully
then all argument values are written into the program variables as designated by the argument table and the
function returns 1. If not, the function returns 0 to indicate failure.

The three string pointersCmdLine, ErrMsg , andErrMark refer to user defined string buffers in which
arg scanargvreturns information about the parsing. They are optional parameters in the sense that they
may be given as NULL if you do not wish to use them.

CmdLine is always assigned a copy of the orginal command line, concatenated into a single space-
separated string.

ErrMsg andErrMark are only used whenarg scanargvdetects a parse error in the command line. In
those cases,ErrMsg is assigned an explantory error message string, andErrMark is assigned a string of
tilde characters which have been formatted in such a way as to highlight the exact location of the error in
CmdLine when printed one atop the other.

The code fragment below demonstrates the use ofarg scanargv. It presumes thatargc, argv, argtable, and
nargare as defined in the example above.

{
char cmdline[200], errmsg[200], errmark[200];

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

7.4 Generating online help. 13

if (!arg_scanargv(argc,argv,argtable,narg,cmdline,errmsg,errmark))
{
// arg error occurred, print error message and exit
printf("ERROR: %s\n", cmdline);
printf(" %s %s\n", errmark, errmsg);
return 1;
}

// only get here if the arguments were scanned successfully

}

And here are some examples of the console output that this code produces whenarg scanargvdetects a
parse error.

$ myprog grad:oops
ERROR: myprog grad:oops

ˆ invalid grad:gradient argument
$ myprog grad:13 nope
ERROR: myprog grad:13 nope

ˆˆˆˆ unexpected argument
$ myprog grad:13 99 uh oh
ERROR: myprog grad:13 99 uh oh

ˆˆ unexpected argument

7.4 Generating online help.

Thearg syntax() andarg glossary() functions take an argument table and generate plain text descriptions of
its command line syntax as well as descriptions of the individual arguments. These are useful for displaying
help text to the user.

const char* arg_syntax(const arg_rec* argtable, int n);
const char* arg_glossary(const arg_rec* argtable, int n, const char* prefix);

Thearg syntax function returns a pointer to an internal string buffer that contains a plain text description of
the usage syntax of the argument table it was passed. The string comprises a space separated list of the tag
and name strings of each argument table entries concatenated into a single line string. Optional command
line arguments are automatically enclosed in square brackets. Callingarg syntaxon our example argument
table would return the string:

[-tit <title>] grad:gradient [y-int]

The calling program would ordinarily prepend the program name from argv[0] to this to get the full com-
mand line usage syntax.

Thearg glossaryfunction is similar, except it generates a multi-line text string with one argument per line.
Each line includes the argument’s tag, its name string, and its description string as given in the argument
table. Arguments that have a NULL description string are omitted. Each line of the glossary string is
prefixed with the string given in the prefix parameter; it useful for indenting each line of the string. Calling
arg glossarywith our example argument table results in the following multi-line string:

-tit \<title\> your title
grad:gradient line gradient
y-int y-intercept

7.5 Putting it all together.

Lets return to our example program and put it all together in its entirety. Our program, when executed
without any arguments (argc==1), will print the argument usage syntax and a glossary on stdout, then exit.

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

7.5 Putting it all together. 14

When given a valid set of arguments, it will display the resulting argument values as they are stored in the
local program variables. Otherwise, it echoes the erroneous command line together with an appropriate
error message and terminates with error code 1.

#include "argtable.h"

int main(int argc, char **argv)
{
static char str[50];
static double grad;
static int c;
arg_rec argtable[] =

{
{"-tit ", "<title>", arg_str, str, "noname", "\t\t your title"},
{"grad:", "gradient", arg_dbl, &grad, NULL, "\t line gradient"},
{NULL, "y-int", arg_int, &c, "0", "\t\t y-intercept"}
};

const size_t narg = sizeof(argtable)/sizeof(arg_rec);

// process the command line args
if (argc==1)

{
// display program usage and exit.
printf("Usage: %s %s\n", argv[0], arg_syntax(argtable,narg));
printf("%s\n",arg_glossary(argtable,narg," "));
return 0;
}

else
{
// scan command line arguments from argv[]
char cmdline[200], errmsg[200], errmark[200];
if (!arg_scanargv(argc, argv, argtable, narg, cmdline, errmsg, errmark))

{
// arg error occurred, print error message and exit
printf("ERROR: %s\n", cmdline);
printf(" %s %s\n", errmark, errmsg);
return 1;
}

}

// get here only if command line args ok
printf("title: \"%s\"\n",str);
printf("gradient: %f\n",grad);
printf("y-intercept: %d\n",c);

return 0;
}

Here are some results of running myprog with various command line arguments.

$ myprog
Usage: myprog [-tit <title>] grad:gradient [y-int]

-tit <title> your title
grad:gradient line gradient
y-int y-intercept

$ myprog grad:10
title: "noname"
gradient: 10.000000
y-intercept: 0

$ myprog 7 grad:1.234
title: "noname"

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

7.6 Release Notes. 15

gradient: 1.234000
y-intercept: 7

$ myprog -tit "hello world" grad:3.33 11
title: "hello world"
gradient: 3.330000
y-intercept: 11

7.6 Release Notes.

Argtable-2.0 coming eventually.
Argtable-2.0 will be a major overhaul of the code. The changes are required to address the most
common complaint about argtable; the potential for buffer overruns as argtable writes into fixed size
string buffers. The redesign will bring some inevitable changes to the library interface, but the basic
look and feel of the argument tables will stay the same. I been promising to finish Argtable-2.0 for a
very long time. Well, one of the days....

Argtable-1.3 released December 20, 2001.
Moved argtable to a new home on thesourceforgesite and revamped the documentation. Documen-
tation is now created withDoxygeninstead ofc2man. Also fixed some minor bugs in the Makefiles.
The source code itself is unaltered.

Argtable-1.2 released August 5, 1999.
The original makefiles have been replaced by autoconf makefiles. The char pointers in the argument
table have been redefined as pointers to const char. Some of argtable’s internal string buffers have
been made larger to accommodate long command lines, and a bug that occurred when program names
contained whitespace has been fixed. The documentation has also been revised.

Argtable-1.1 released January 20, 1999.
This version fixes some cross-platform compilation errors, and saw the introduction of the multi-
platform configuration. It also saw the addition of thearg record() function and a change to thearg -
scanargv() function so that it no longer requires argv[0] to be the first entry of the argument table.
To maintain backwards compatibility, programs written for version 1.0 should now define the macro
define ARGTABLECOMPATIBILITY 10 prior to including theargtable.hheader file.

Argtable-1.0 released November 13, 1998.
Argtable’s debut!

Generated at Fri Dec 21 00:12:20 2001 for Argtable by Doxygen written by Dimitri van Heeschc© 1997-2001

Index
arg bool

argtable.h,7
arg catargs

argtable.h,9
arg dbl

argtable.h,7
arg dump

argtable.h,10
arg glossary

argtable.h,9
arg int

argtable.h,7
arg lit

argtable.h,7
arg rec,4

argdescrip,6
argname,5
argtype,5
defaultstr,5
tagstr,5
valueptr,5

arg record
argtable.h,9

arg scanargv
argtable.h,7

arg scanstr
argtable.h,8

arg str
argtable.h,7

arg syntax
argtable.h,8

arg type
argtable.h,7

arg typestr
argtable.h,10

argdescrip
arg rec,6

argname
arg rec,5

argtable.h,6
arg bool,7
arg catargs,9
arg dbl, 7
arg dump,10
arg glossary,9
arg int, 7
arg lit, 7
arg record,9
arg scanargv,7
arg scanstr,8

arg str,7
arg syntax,8
arg type,7
arg typestr,10
ARGTABLE VERSION,7

ARGTABLE VERSION
argtable.h,7

argtype
arg rec,5

defaultstr
arg rec,5

tagstr
arg rec,5

valueptr
arg rec,5

	Introduction to Argtable
	Argtable Data Structure Index
	Argtable File Index
	Argtable Page Index
	Argtable Class Documentation
	Argtable File Documentation
	Argtable Page Documentation

